Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA

نویسندگان

  • Elizabeth F. Waring
  • Dylan W. Schwilk
چکیده

In 2011, Big Bend National Park, Texas, USA, experienced the most severe single year drought in its recorded history, resulting in significant plant mortality. We used this event to test how perennial plant response to drought varied across elevation, plant growth form and leaf traits. In October 2010 and October 2011, we measured plant cover by species at six evenly-spaced elevations ranging from Chihuahuan desert (666 m) to oak forest in the Chisos mountains (1,920 m). We asked the following questions: what was the relationship between elevation and stem dieback and did susceptibility to drought differ among functional groups or by leaf traits? In 2010, pre-drought, we measured leaf mass per area (LMA) on each species. In 2011, the percent of canopy dieback for each individual was visually estimated. Living canopy cover decreased significantly after the drought of 2011 and dieback decreased with elevation. There was no relationship between LMA and dieback within elevations. The negative relationship between proportional dieback and elevation was consistent in shrub and succulent species, which were the most common growth forms across elevations, indicating that dieback was largely driven by elevation and not by species traits. Growth form turnover did not influence canopy dieback; differences in canopy cover and proportional dieback among elevations were driven primarily by differences in drought severity. These results indicate that the 2011 drought in Big Bend National Park had a large effect on communities at all elevations with average dieback for all woody plants ranging from 8% dieback at the highest elevation to 83% dieback at lowest elevations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tree mortality from a short-duration freezing event and global-change-type drought in a Southwestern piñon-juniper woodland, USA

This study documents tree mortality in Big Bend National Park in Texas in response to the most acute one-year drought on record, which occurred following a five-day winter freeze. I estimated changes in forest stand structure and species composition due to freezing and drought in the Chisos Mountains of Big Bend National Park using permanent monitoring plot data. The drought killed over half (6...

متن کامل

Environmental contaminants in prey and tissues of the peregrine falcon in the Big Bend Region, Texas, USA.

Peregrine falcons (Falco peregrinus) have been recorded nesting in Big Bend National Park, Texas, USA and other areas of the Chihuahuan Desert since the early 1900s. From 1993 to 1996, peregrine falcon productivity rates were very low and coincided with periods of low rainfall. However, low productivity also was suspected to be caused by environmental contaminants. To evaluate potential impacts...

متن کامل

Association between aflatoxin contamination and N2 fixation in peanut under drought conditions

Traits related to nitrogen fixation may be used as indirect selection criteria foraflatoxin resistance in peanut. The aim of this study was to investigate therelationship between N2 fixation traits and aflatoxin contamination in peanut underdifferent drought conditions. Eleven peanut genotypes were evaluated under threewater regimes for two seasons in the field. Data were observed on kernel inf...

متن کامل

Responses of rooting traits in peanut genotypes under pre-flowering drought stress

The root is an important plant part contributing to peanut productivity underwater-limited conditions. Root volume, root surface area and root diameter may becharacters responding to pre-flowering drought (PFD) in peanut. The objectives ofthis study were to investigate the responses to PFD for root surface area, rootvolume and root diameter and to determine the inter-relationships among theresp...

متن کامل

Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback.

Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought-induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long-term by quantifying wood-anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water-use efficiency (iWUE) from carbon isotopi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014